О чем речь? Можно с уверенностью назвать двоичную систему счисления одной из основных, которые используются в вычислительной технике. А значит, привычные нам компьютер и смартфон применяют 0 и 1 для расчетов.
На что обратить внимание? Стоит отметить, что такая «популярность» – это дань традиции, заложенной праотцом вычислительных машин Блезом Паскалем. И все же, порой, нужно переводить показатели двоичной системы в 10-ю или 16-ю. Как же это сделать?
В статье рассказывается:
- Общепринятые системы счисления
- Числа, используемые в двоичной системе счисления
- Сложение, вычитание и умножение в двоичной системе счисления
- Как переводить числа в двоичной системе счисления в десятичную
- Алгоритм перевода из двоичной системы счисления в шестнадцатеричную
-
Пройди тест и узнай, какая сфера тебе подходит:
айти, дизайн или маркетинг.Бесплатно от Geekbrains
Общепринятые системы счисления
Человечество в ходе своего развития со временем стало нуждаться в способах подсчета. Нужно было считать, например, количество добычи или убитых врагов из других племен. И эта нужда у древних людей только возрастала. Поначалу пользовались абстрактными понятиями типа «нисколько», «один», «много». Затем в употребление вошла «пара», означающая два каких-то предмета. Уже одно это нововведение существенно упростило жизнь древнему человеку.
В дальнейшем люди стали считать единицами, используя в качестве таковых пальцы на руках и ногах, зарубки на деревьях, кости зверей, узелки на веревках. Благодаря изобретению таких примитивных счетных машин человечество спустя тысячелетия смогло понять, что в древности люди умели не только считать, но также фиксировать результаты счета.
С течением времени возникла необходимость в символьном обозначении любого количества больше единицы. В итоге древними египтянами были впервые придуманы знаки, обозначающие 1, 5 и 10.
Система чисел, состоящая из определенных знаков (цифр), фактически и является системой счисления. Другими словами, это способ численного выражения с помощью принятых правил и специальных знаков, называемых цифрами.
входят в ТОП-30 с доходом
от 210 000 ₽/мес
Скачивайте и используйте уже сегодня:
Топ-30 самых востребованных и высокооплачиваемых профессий 2023
Поможет разобраться в актуальной ситуации на рынке труда
Подборка 50+ бесплатных нейросетей для упрощения работы и увеличения заработка
Только проверенные нейросети с доступом из России и свободным использованием
ТОП-100 площадок для поиска работы от GeekBrains
Список проверенных ресурсов реальных вакансий с доходом от 210 000 ₽
Любая система счисления принадлежит к одной из двух категорий:
Позиционные СС
Конкретное значение числа определяется не только цифрами, но и их позицией. Сюда относят арабскую систему, где первый разряд справа отведен для единиц, второй разряд справа — для десятков, третий разряд справа — для сотен и т. д. Таким образом, для записи числа 475 необходимо в крайней правой позиции расположить пятерку (пять единиц), после нее — семерку (семь десятков) и затем — четверку (четыре сотни). Позиционными считаются также системы счисления с основаниями (2, 8, 16).
Непозиционные СС
Значение числа определяется только знаком (цифрой). Для обозначения единиц, десятков, сотен и тысяч используются отдельные символы. Наиболее показательным представителем данной группы является римская система счисления. Здесь имеется еще одна отличительная особенность. Для записи очень больших чисел необязательно использовать весь набор знаков — на такие случаи существуют функции сложения и вычитания.
К примеру, число 475 римскими цифрами может выглядеть как CCCCXXXXXXXIIIII либо, в сокращенном виде, как CDLXXV. В последнем варианте используются именно вычитание и прибавление. Значение цифры, стоящей слева от большего числа, отнимается соответственно от этого числа. Если эта цифра стоит справа, то значение прибавляется.
Впервые позиционная система счисления была введена в Вавилоне. Примечательно, что она была шестнадцатеричная. К 19 веку распространение получила двенадцатеричная система.
Прежде чем разбирать, как записывается двоичная система счисления, определимся с терминами. Алфавит любой СС состоит из знаков, обозначающих отдельные цифры. Основанием называют значение, равное количеству знаков для кодирования чисел и представляющее собой целое число от 2 и выше.
Когда рассматривается несколько разных СС, тип каждой из них обычно обозначается подстрочным знаком. По умолчанию, если не указано основание, число является десятичным. Позиция цифры в числе называется разрядом.
Числа, используемые в двоичной системе счисления
Состав двоичной системы счисления — цифры 0 и 1. Основание равно 2. В крайней правой позиции числа указывается количество единиц, левее — количество двоек, затем количество четверок и т. д.
Таким образом, любое натуральное число кодируется в последовательный ряд из нулей и единиц — это и будет являться двоичной системой счисления. Решение такой задачи покажем на примере ниже.
10112 = 1*23 + 0*2*2+1*21+1*20 =1*8 + 1*2+1=1110
Как известно, двоичная система счисления используется вычислительной техникой для хранения информации, а также для преобразования данных в графические изображения. В свою очередь обработка двоичного кода требует предварительного размещения каждой цифры внутри особой электронной схемы (триггера). Эта схема может пребывать в одном из двух состояний — «ноль» или «единица».
Отдельное число, состоящее из нескольких цифр, сохраняется группой триггеров — регистром. Оперативная память компьютера фактически является совокупностью таких регистров.
Скачать файлС точки зрения вычислительной техники любое сохраняемое число представляет собой машинное слово, арифметические и логические операции над которым выполняет арифметико-логическое устройство (АЛУ). Чтобы компьютеру было проще работать с регистрами, они нумеруются (или наделяются адресами).
Тем не менее, конечный пользователь видит всю числовую информацию в привычном ему десятичном виде. Почему так происходит? Изначально, нажимая на клавишу, пользователь передает компьютеру соответствующую последовательность электрических сигналов (нулей и единиц). Для каждого символа определен конкретный набор этих импульсов.
Специальные программы (драйверы клавиатуры и экрана) преобразуют эти сигналы в читаемый вид путем обращения к кодовой таблице. Например, стандарт Unicode позволяет закодировать таким образом 65536 символов. Именно так используется двоичная система счисления в информатике — нули и единицы преобразуются программным способом в текст и изображения на экране.
Далее приведем очевидные достоинства использования двоичного способа представления информации.
- От технических устройств требуется лишь два устойчивых состояния (например, наличие тока и отсутствие тока и т. д.).
- Вычислительной технике значительно проще выполнять операции с двоичными данными, чем с десятичными.
- Таблицы сложения и умножения в двоичной системе имеют гораздо меньший размер по сравнению с такими же таблицами для десятичной системы.
на обучение «Инженер-программист» до 01 декабря
Недостатки:
- возможное превращение конечных десятичных дробей в бесконечные двоичные;
- большее количество занимаемых разрядов по сравнению с десятичной записью;
- сложность с восприятием записи чисел, поскольку двоичная система счисления — этопредставление только в виде нулей и единиц.
Сложение, вычитание и умножение в двоичной системе счисления
Для того, чтобы складывать числа, пользуются следующей таблицей:
+ | 0 | 1 |
0 | 0 | 1 |
1 | 1 | 10 (переход в старший разряд) |
Таблица вычитания в двоичной системе счисления выглядит так:
— | 0 | 1 |
0 | 0 | 1 |
1 | (взятие из старшего разряда) 1 | 0 |
Умножение выполняется по следующей таблице:
* | 0 | 1 |
0 | 0 | 0 |
1 | 0 | 1 |
Как переводить числа в двоичной системе счисления в десятичную
Сперва приведем алфавиты трех используемых систем — двоичной, десятичной и шестнадцатеричной.
Основание | Наименование системы | Алфавит |
2 | Двоичная | 0, 1 |
10 | Десятичная | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 |
16 | Шестнадцатеричная | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F |
Как уже упоминалось, двоичная система счисления имеет основание 2. Чтобы перевести число в десятичный формат, можно воспользоваться такой таблицей степеней данного основания:
512 | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
Здесь ряд начинается с единицы, а каждая последующая цифра является результатом умножения предыдущей на двойку. После 1 ставится так называемая двоичная точка.
В качестве примера переведем число 1011011 двоичной системы счисления в 10-ный формат (число 91):
0*2+1=1>>1*2+0=2>>2*2+1=5>>5*2+1=11>>11*2+0=22>>22*2+1=45>> 45*2+1=91.
А конвертация 101111 в десятичную систему даст число 47:
0*2+1=1>>1*2+0=2>>2*2+1=5>>5*2+1=11>> 11*2+1=23 >> 23*2+1=47
НУЖНА КАРТИНКА
Таким же образом можно переводить и дробные числа. Для примера возьмем 1011010, 101 в двоичной системе счисления. Перевод чисел в десятичную можно осуществлять в таком виде:
1*26 + 0*25 + 1*24 + 1*2 + 0 *22 + 1 * 21 + 0 * 20 + 1 * 2-1 + 0 * 2-2 + 1 * 2-3 = 90,625
Иначе говоря, расчет будет следующим:
1*64+0*32+1*16+1*8+0*4+1*2+0*1+1*0,5+0*0,25+1*0,125 = 90,625
Полученное значение в десятичной системе также высчитывается по таблице:
64 | 32 | 16 | 8 | 4 | 2 | 1 | 0,5 | 0,25 | 0,125 |
1 | 0 | 1 | 1 | 0 | 1 | 0. | .1 | 0 | 1 |
+64 | +0 | +16 | +8 | +0 | +2 | +0 | +0.5 | +0 | +1.125 |
Алгоритм перевода из двоичной системы счисления в шестнадцатеричную
Здесь необходимо выполнить 2 шага:
- Перевод числа из двоичной системы в десятичную
- Преобразование полученного значения в шестнадцатеричный формат
К примеру, имеется число 1011101 в двоичной системе счисления. Запись чисел для выполнения первого шага осуществляется по формуле:
A2 = an-1 ∙ 2n-1 + an-2 ∙ 2n-2 + ∙∙∙ + a0 ∙ 20
Подставляем значения:
10111012=1 ∙ 26 + 0 ∙ 25 + 1 ∙ 24 + 1 ∙ 23 + 1 ∙ 22 + 0 ∙ 21 + 1 ∙ 20 = 1 ∙ 64 + 0 ∙ 32 + 1 ∙ 16 + 1 ∙ 8 + 1 ∙ 4 + 0 ∙ 2 + 1 ∙ 1 = 64 + 0 + 16 + 8 + 4 + 0 + 1 = 9310
Теперь полученное десятичное число необходимо преобразовать в шестнадцатеричное. Для этого 93 многократно последовательно делим на 16 до тех пор, пока остаток не станет меньше 16.
В процессе деления остатки нужно записывать в обратном порядке. Результатом всех операций будет число 9310=5D16.
НУЖНА КАРТИНКА
Перевод дробных чисел в шестнадцатеричный формат выполняется аналогичным образом — через промежуточный этап перевода в десятичную систему.
Вновь покажем это на примере. Преобразуем двоичное число 10001100.110 сначала в десятичную систему по формуле:
An = an-1 ∙ qn-1 + an-2 ∙ qn-2 + ∙∙∙ + a0 ∙ q0 + a-1 ∙ q-1 + ∙∙∙ + a-m ∙ q-m
Подставляем наши значения:
10001100.1102=1 ∙ 27 + 0 ∙ 26 + 0 ∙ 25 + 0 ∙ 24 + 1 ∙ 23 + 1 ∙ 22 + 0 ∙ 21 + 0 ∙ 20 + 1 ∙ 2-1 + 1 ∙ 2-2 + 0 ∙ 2-3 = 1 ∙ 128 + 0 ∙ 64 + 0 ∙ 32 + 0 ∙ 16 + 1 ∙ 8 + 1 ∙ 4 + 0 ∙ 2 + 0 ∙ 1 + 1 ∙ 0.5 + 1 ∙ 0.25 + 0 ∙ 0.125 = 128 + 0 + 0 + 0 + 8 + 4 + 0 + 0 + 0.5 + 0.25 + 0 = 140.7510
Следует отметить сильное сходство формул расчетов дробного и целого десятичных чисел. Тем не менее, отличия также имеются.
Вторым этапом переводим число 140,75 в шестнадцатеричный формат. Это делается в два подэтапа:
- Перевод отдельно целой части числа.
- Перевод отдельно дробной части числа.
После записи остатков в обратном порядке получаем результат: 14010=8C16
Операции с дробной частью отличаются тем, что мы многократно и последовательно умножаем ее, пока она не станет равной нулю (или значению в соответствии с заданной точностью).
В нашем случае это будет выглядеть так: 0.75 * 16 = 12.0 (C).
Поскольку после первого же умножения дробная часть обнулилась, дальнейшие итерации прекращаем. Итоговый результат: 0.12 (0.С) или, иначе, 0.75 ∙ 16 = 12.0 (C)
Читайте также!
Остался последний этап — соединение преобразованных целой и дробной частей: 140.7510=8C.C16. Это и будет общим решением всей задачи.
Сперва может показаться, что изложенный здесь материал слишком сложен и запутан для простого обывателя. На самом деле двоичная арифметика предельно логична и понятна. Пользование таблицами сложения и умножения не представляет сложности, если в них разобраться.