Получите бесплатно 4 курса для лёгкого старта работы в IT
Получить бесплатно
Главная БлогДерево решений: понятие, алгоритм работы, сферы применения метода
Дерево решений

Дерево решений: понятие, алгоритм работы, сферы применения метода

Дата публикации: 22.11.2022
12 736
Время чтения: 17 минут
Дата обновления: 28.09.2023
В статье рассказывается:

Что это такое? Дерево решений является весьма эффективной методикой, применяемой для анализа больших массивов данных. Инструмент работает по четкому алгоритму и в соответствии со строго определенными принципами.

Где применяется? Дерево решений как способ обработки имеющейся информации и одно из средств предсказательной аналитики используется во многих сферах человеческой деятельности: банковской и медицинской, предпринимательской и промышленной. Часто инструмент бывает полезен в машинном обучении.

В статье рассказывается:

  1. Общее описание метода дерева решений
  2. Алгоритм работы инструмента
  3. Задачи, решаемые с помощью дерева методики
  4. Сферы применения инструмента
  5. Дерево решений в машинном обучении
  6. Этапы построения дерева решений
  7. Преимущества и недостатки методики
  8. Пройди тест и узнай, какая сфера тебе подходит:
    айти, дизайн или маркетинг.
    Бесплатно от Geekbrains

Общее описание метода дерева решений

Сама идея создания и дальнейшего развития моделей дерева решений появилась в середине XX века после исследований вероятного человеческого поведения киберсистемами. Работы К. Ховеленда «Компьютерное моделирование мышления» и Е. Ханта «Эксперименты по индукции» сыграли ведущую роль в развитии этого направления.

Дальнейшее увеличение популярности этому методу обеспечили работы Джона Р. Куинлена, который разработал алгоритм ID3 и его усовершенствованные модификации С4.5 и С5.0, а также Лео Бреймана, предложившего алгоритм CART и метод случайного леса.

Если говорить простыми словами, то дерево решений представляет собой задачу с несколькими вариантами действий. На карте прорабатываются возможные результаты каждого шага, а также следующие на них реакции. Этот метод особенно актуален в тех ситуациях, в которых нужно сделать вывод о ряде последовательных решений, ведущих к оптимальному исходу.

Общее описание метода дерева решений
Общее описание метода дерева решений

Алгоритм работы инструмента

Дерево принятия решений — это метод, дающий представление о действиях и их последствиях в виде упорядоченной иерархии. Оно включает в себя элементы двух типов: узлы (node) и листья (leaf). Узлы представляют собой совокупность решающих правил и осуществляют проверку гипотетических ситуаций на соответствие выбранным показателям.

Если говорить проще, то примеры, которые попадают в узел, после прохождения проверки разделяются на два типа:

  • Первый — те, которые подходят под назначенные правила.
  • Второй — те, которые не подходят под назначенные правила.

Затем к каждому подтипу опять применяется правило, и процедура повторяется до тех пор, пока не произойдёт остановка алгоритма дерева решений. Последний узел, который больше не нуждается в проверке и разделении на подмножество, становится листом.

Узнай, какие ИТ - профессии
входят в ТОП-30 с доходом
от 210 000 ₽/мес
Павел Симонов - исполнительный директор Geekbrains
Павел Симонов
Исполнительный директор Geekbrains
Команда GeekBrains совместно с международными специалистами по развитию карьеры подготовили материалы, которые помогут вам начать путь к профессии мечты.
Подборка содержит только самые востребованные и высокооплачиваемые специальности и направления в IT-сфере. 86% наших учеников с помощью данных материалов определились с карьерной целью на ближайшее будущее!

Скачивайте и используйте уже сегодня:

Павел Симонов - исполнительный директор Geekbrains
Павел Симонов
Исполнительный директор Geekbrains
pdf иконка

Топ-30 самых востребованных и высокооплачиваемых профессий 2023

Поможет разобраться в актуальной ситуации на рынке труда

doc иконка

Подборка 50+ бесплатных нейросетей для упрощения работы и увеличения заработка

Только проверенные нейросети с доступом из России и свободным использованием

pdf иконка

ТОП-100 площадок для поиска работы от GeekBrains

Список проверенных ресурсов реальных вакансий с доходом от 210 000 ₽

pdf 3,7mb
doc 1,7mb
Уже скачали 31987 pdf иконка

Лист представляет собой решение для примера, который в нём находится. Таким образом, там содержится не одно общее правило, а подмножество объектов, которые удовлетворяют всем правилам данной ветви. Ведь пример оказывается в листе, только если будет соответствовать всем установленным критериям на пути к нему. Очевидно, что к каждому листу ведёт только одна «дорога», что предполагает единственное верное решение и следование одному оптимальному алгоритму.

Задачи, решаемые с помощью методики

Задачи составления дерева решений заключаются в следующем:

  • Классификация. Анализ предложенных объектов и решение о соответствии их определённому классу из заявленных ранее. При этом целевая переменная имеет дискретные задачи.
  • Регрессия (численное предсказание). Прогнозирование конкретного числового значения независимой переменной для заданного вектора.
  • Описание объектов. Позволяет ёмко и лаконично описывать объекты при помощи использования ряда конкретных правил.

Сферы применения

Огромное количество аналитических платформ включают в себя различные модули для построения деревьев решений. Этот метод анализа данных является очень удобным и позволяет выявить оптимальный алгоритм действий для решения заданной проблемы. Дерево решений, например, используется для составления готовых скриптов для общения с потребителями в сфере продаж товаров и услуг.

Сферы применения
Сферы применения

Рассмотрим следующую ситуацию: пользователь захотел оплатить услугу через приложение банка. Операция была отклонена. После этого клиент написал в службу поддержки банка для выяснения обстоятельств. Сотрудник, который ответит ему в чате, будет следовать определённому алгоритму. Для начала он спросит у клиента идентификатор платежа. В дальнейшем, согласно дереву решений, варианты общения будут разветвляться в зависимости от ответа на этот вопрос.

Отдел продаж также пользуется деревьями решений: менеджер задает клиенту вопросы и выстраивает своё дальнейшее общение с ним в зависимости от его ответов.

В общем, практически в любой службе поддержки или работы с клиентами пользуются деревьями решений, будь то интернет-провайдер или отдел претензий к качеству товара.

В статистике данный инструмент также очень полезен, ведь с его помощью можно прогнозировать ситуации и описывать данные, разделяя их на взаимосвязанные группы. Самой простой и популярной задачей, которая ставится перед деревом решений, является бинарная классификация. Она представляет собой деление заявленных примеров на два типа, один из которых является положительным (успех), а второй — отрицательным (неудача).

Например, метеорологам требуется составить прогноз о том, будет ли завтра дождь. Для анализа предлагаются данные о предшествующих пятидесяти днях. Чтобы составить дерево решений, нужно разделить все эти дни на две группы, которые будут соответствовать следующим значениям: 1 — на следующий день шёл дождь, 0 — на следующий день дождя не было.

Кроме того, анализируются все сопутствующие условия: влажность, атмосферное давление, направление ветра, средняя температура и т. д. Использование алгоритма дерева решений дает возможность выявить в общем объёме информации те условия, которые позволят разделить дни на предложенные два типа. Таким образом, будет выявлена ситуация, позволяющая максимально верно составить прогноз на следующий день.

Дерево решений в машинном обучении

Этот инструмент используется и при составлении автоматизированных моделей прогнозирования. Они активно применяются в машинном обучении. Применение дерева решений даёт возможность предсказать вероятную ценность объекта с учётом всей известной о нём информации.

Дерево решений в машинном обучении
Дерево решений в машинном обучении

Этот тип называется «дерево классификации». В данной схеме узлы представляют собой данные, а не решение. Каждая ветвь такого дерева содержит определённый набор правил, которые соответствуют выбранному классу.

Дарим скидку от 60%
на курсы от GeekBrains до 01 декабря
Уже через 9 месяцев сможете устроиться на работу с доходом от 150 000 рублей
Забронировать скидку

Такие правила принятия решений обычно выражаются в условии соответствия, которое кратко можно описать формулой «если — то». Условия формулируются отдельно по каждому решению или значению и прогнозируют вероятность определённого результата при соблюдении условий.

Любая дополнительная информация увеличивает достоверность прогнозирования того, насколько выбранный объект соответствует заявленным условиям. Полученные данные могут быть использованы для составления более масштабного дерева решений в выбранной области.

Только до 25.11
Скачай подборку материалов, чтобы гарантированно найти работу в IT за 14 дней
Список документов:
ТОП-100 площадок для поиска работы от GeekBrains
20 профессий 2023 года, с доходом от 150 000 рублей
Чек-лист «Как успешно пройти собеседование»
Чтобы получить файл, укажите e-mail:
Введите e-mail, чтобы получить доступ к документам
Подтвердите, что вы не робот,
указав номер телефона:
Введите телефон, чтобы получить доступ к документам
Уже скачали 52300

Иногда применяется сразу несколько видов деревьев решений. Это позволяет наиболее точно предсказать результат и выявить оптимальный алгоритм для достижения желаемого итога. В качестве комбинированного подхода используются следующие методы:

  • Бэггинг. Включает в себя создание нескольких деревьев решений для анализа повторной выборки исходных данных. На основе полученных результатов формулируется единое решение заданного вопроса.
  • Метод случайного леса. В данном случае несколько деревьев применяются для увеличения количества успешно классифицированных объектов.
  • Бустинг. Используется в отношении регрессионных и классификационных деревьев.
  • Ротационный лес. Деревья решений выстраиваются на основе метода анализа главных компонентов (PCA) на случайной выборке данных.

Идеально составленное дерево решений должно выдавать максимум информации при минимальном количестве уровней.

Дерево решений в машинном обучении
Дерево решений в машинном обучении

В машинном обучении модель дерева решений используется особенно часто, так как она дает множество преимуществ. Этот инструмент экономически выгоден, так как затраты на его использование уменьшаются с каждой дополнительной точкой данных. Деревья решений позволяют анализировать как числовые, так и категориальные данные.

Кроме того, данный метод даёт возможность формировать вопросы с несколькими вероятными ответами. Он даёт максимально точные результаты даже при искажении предпосылок исходных данных.

Этапы построения дерева решений

Составление деревьев решений для машинного обучения и анализа давно автоматизировано. Для этого можно воспользоваться специальными библиотеками, созданными при помощи двух языков программирования: R и Python. В рамках Python существует бесплатная библиотека стандартных моделей машинного обучения scikit-learn, которая активно используется аналитиками для решения задач. В ней также существует возможность использования предподготовленного кода.

Для того чтобы составить дерево решений с помощью предподготовленного кода, необходимо выполнить следующие действия:

Сбор данных и их анализ

Сначала аналитики оценивают исходные данные и ищут в них общие закономерности. Затем они формируют ответ на вопрос о том, почему для решения данной задачи должен использоваться именно такой инструмент. Кроме того, на этом этапе вычисляются факторы, которые оказывают влияние на зависимую переменную.

Проведение предподготовки

На этом этапе специалисты очищают данные от аномалий. Это действие необходимо для того, чтобы представить информацию в нужном формате. Существуют специализированные алгоритмы для данной работы:

  • Заполнение пропусков средними значениями.
  • Нормирование показателей относительно друг друга.
  • Удаление аномалий.
  • Категоризация переменных данных.
Проведение предподготовки
Проведение предподготовки

Формирование отложенной выборки

Некоторую часть представленных данных необходимо проанализировать самостоятельно, чтобы определить ожидаемое значение для итогового результата. Это позволяет проверить качество работы алгоритма дерева решений при анализе ситуации, с которыми обученная модель ранее не сталкивалась.

Откройте для себя захватывающий мир IT! Обучайтесь со скидкой до 61% и получайте современную профессию с гарантией трудоустройства. Первый месяц – бесплатно. Выбирайте программу прямо сейчас и станьте востребованным специалистом.

Составление дерева решений и начало обучение модели

Специалисты загружают в библиотеку необходимые данные и условия задачи. На основе представленной информации происходит автоматическая генерация правил работы дерева решений.

Сравнение результатов на обучающей и на отложенной выборке

Если результаты совпадают, значит, модель дерева решений обучена верно и пригодна для дальнейшей работы. В этом случае можно сохранить код обученной модели и применять его в будущем.

Преимущества и недостатки методики

Преимущества метода дерева решений:

  • Правила создания таких моделей просты и понятны, а интерпретировать полученные результаты легко.
  • Есть возможность работать с разными видами переменных.
  • Деревья решений допускают пропуски данных и способны заполнять их наиболее вероятным в данной ситуации значением.
  • Этот инструмент помогает выявить, какие данные наиболее важны для достижения нужного результата.
  • Деревья решений способны самостоятельно формировать правила в малознакомых специалисту областях.
  • Их легко визуализировать, что позволяет воспринимать не только модель в целом, но и прогнозировать результат для отдельных субъектов в дереве.
  • Не требуют большого количества изначально заданных параметров.
  • Способны работать с категориальными и числовыми идентификаторами.
  • Позволяют быстро решить проблему благодаря качественному прогнозированию результата.

Но данный метод имеет не только преимущества, но и недостатки, которые тоже необходимо учитывать при работе с ним:

  • В задачах на классификацию объектов существует вероятность ошибок. Это связано с большим количеством классов при маленьком числе обучающих примеров.
  • Важно учитывать то, что изменения параметров в одном узле дерева решений может привести к полному изменению всей его структуры.
  • Составление дерева решений может быть весьма трудоёмким. Это связано с тем, что в каждом узле каждый элемент должен анализироваться до тех пор, пока не станет возможным принятие наилучшего возможного в данной ситуации решения.

Несмотря на ряд недостатков, создание дерева решений является очень востребованной методикой. Она актуальна в различных ситуациях и способна сослужить хорошую службу. Если вы являетесь новичком в данной сфере, то попробуйте начать с небольших задач. Постепенно вы наберетесь опыта и сможете грамотно использовать этот инструмент для работы с более глобальными вопросами.

Оцените статью:
2
Добавить комментарий

Сортировать:
По дате публикации
По рейтингу
Читайте также
prev
next
Бесплатные вебинары:
prev
next
Как работает дизайн-студия на примере одного кейса 

Как работает дизайн-студия на примере одного кейса 

Узнать подробнее
Инновационные подходы к обучению информационным технологиям

Инновационные подходы к обучению информационным технологиям

Узнать подробнее
Как стать Python-разработчиком

Как стать Python-разработчиком

Узнать подробнее
Что нужно знать разработчику

Что нужно знать разработчику

Узнать подробнее
Кто такой тестировщик и как им стать

Кто такой тестировщик и как им стать

Узнать подробнее
Чем занимается программист и как им стать

Чем занимается программист и как им стать

Узнать подробнее
Как искусственный интеллект помогает и мешает задачам кибербезопасности

Как искусственный интеллект помогает и мешает задачам кибербезопасности

Узнать подробнее
Бесплатный вебинар про внедрение искусственного интеллекта

Бесплатный вебинар про внедрение искусственного интеллекта

Узнать подробнее
Какие есть профессии в ИТ

Какие есть профессии в ИТ

Узнать подробнее
Смените профессию,
получите новые навыки,
запустите карьеру
Поможем подобрать обучение:
Забрать подарок

Получите подробную стратегию для новичков на 2023 год, как с нуля выйти на доход 200 000 ₽ за 7 месяцев

Подарки от Geekbrains из закрытой базы:
Осталось 17 мест

Поздравляем!
Вы выиграли 4 курса по IT-профессиям.
Дождитесь звонка нашего менеджера для уточнения деталей

Иван Степанин
Иван Степанин печатает ...