Начать свое дело
Пять лет назад я решил основать собственный бизнес. До этого с момента окончания вуза я работал программистом 1С, прошел путь от рядового сотрудника до руководителя проектов. За несколько лет в этой сфере я изучил подводные течения рынка, проблемы и потребности клиентов. Из-за медлительности исполнителей, лишней функциональности ПО и банальных сбоев системы крупные компании за одну ночь могли лишиться миллионной прибыли. Со временем у меня сформировалась идея, как автоматизировать типовые процессы в финансовом учете. Чтобы заняться этим, надо было перестать быть наемным сотрудником — лоббирование идей часто отнимает больше сил, чем их воплощение.
Я хотел начать собственный бизнес, связанный с 1С, не столько из-за финансов, сколько из желания предоставлять качественные услуги и идти в ногу со временем. Поэтому и получилось развить свое дело, нанять штат специалистов, сотрудничать с крупными клиентами. Этот же подход и высшее образование программиста всегда помогали мне следить за трендами в IT и управлении бизнесом. Я заинтересовался технологиями интеграции машины и человека, мобильными приложениями, интерфейсами и автоматизацией.
Понять, чему учиться дальше
Этот интерес привел меня к тому, что пару лет назад я увлекся разработкой приложений на iOS. Изучая материалы в интернете, наткнулся на портал GeekBrains. Посмотрел несколько вебинаров, изучил блог и описания курсов. В итоге начал обучение по профессии «iOS-разработчик». Вскоре отметил, насколько качественно и быстро сегодня можно получить специальность в IT.
В итоге получилось несколько мобильных приложений для клиентов. Одно из них для сети кофеен — помогает принимать товар с завода через мобильный, быстро отмечать информацию о расхождениях, а также фотографировать брак, данные о котором тут же отправляются в базу завода.
Наша компания специализируется на автоматизации финансового и управленческого учета, бухгалтерском и управленческом аутсорсинге. Поэтому мне хотелось разобраться, куда движется сфера финансов. Основные тренды сводились к оптимизации и автоматизации процессов. Так я погрузился в блокчейн-технологии, а затем и в Data Science.
В стратегию бизнеса на ближайшие пять лет я включил внедрение в делопроизводство машинного обучения. Мне это интересно не только как человеку из IT — я действительно вижу в этом возможность для бизнеса перейти на качественно новый уровень.
Мы занимаемся корпоративным сопровождением — у наших клиентов (каждый — от 20 пользователей) ежедневно возникают вопросы и задачи. И большинство из них — типовые, которые можно легко сортировать и решать без участия человека. Это может здорово сэкономить время и ресурсы, необходимые для расширения клиентской базы, улучшения качества услуг. А в итоге — увеличить прибыль.
Я начал читать книги и статьи. Но в этой области без фундаментального образования не обойтись. А в GeekUniversity как раз стартовал факультет искусственного интеллекта. Я планировал отправить на обучение нескольких сотрудников, но захотелось сначала попробовать самому. Так в апреле 2019 года я снова стал студентом, на этот раз в онлайне.
Просыпаться и заниматься
Имея свой бизнес, невозможно выделять время на обучение каждый вечер. Так что я сдвинул режим сна и стал заниматься по утрам. Теперь ложусь в 23 часа и встаю в 5. Есть очевидный плюс: когда занимаюсь, голова свежая и никто не беспокоит. Вебинары просматриваю на удвоенной скорости — удобно при дефиците времени.
Больших сложностей в обучении нет, мне хватает 4–8 часов в неделю, в том числе на практические задания. Но иногда требуется намного больше — особенно когда берешься за задачи «со звездочкой». Скорее всего, дальше будет сложнее, так как пока мы прошли только вводную часть. Но польза от обучения уже есть. По подаче и актуальности курс мне нравится. Уже думаю над тем, кого из сотрудников наградить поступлением в GeekUniversity.
И сразу использовать знания
Изученные возможности я уже внедряю в бизнес. В компании мы запустили процессы DevOps. Много времени уходит на организацию совместной разработки и загрузки изменений в продакшн у клиента. Особенно когда клиент работает с раннего утра до 23 часов — тогда возможность внести изменения в его базу есть только ночью. Внедрение Git и сопутствующих технологий позволило автоматизировать процесс и разгрузить разработчиков.
На Python пишем нагрузочные тесты для веб-сервисов. Получается хорошо — благодаря простому и удобному синтаксису, а также богатым библиотекам.
По мотивам курса по Linux и облачным вычислениям меняем свою инфраструктуру. Мы разрабатываем свой сервис для корпоративной поддержки клиентов, поэтому задача по организации базы для этого сервиса очень кстати.
Вообще мне кажется, что технологии искусственного интеллекта и машинного обучения рано или поздно проникнут во все сферы и любой бизнес. И это не страшилка о том, что роботы заменят людей, — напротив, спрос на человеческие ресурсы только вырастет.
Но что произойдет точно, так это улучшится качество услуг. В 1С вижу огромный потенциал для развития как на стороне клиентов, так и на нашей — у интегратора. Сейчас много времени тратится на однотипную работу. Внедрение машинного обучения в работу по обращениям пользователей — наш следующий шаг. Далее — онлайн-отслеживание ошибок на стороне клиента.
Освоить востребованную профессию в Data Science можно всего за полтора года на курсах GeekBrains. После учёбы вы сможете работать по специальностям Data Scientist, Data Analyst, Machine Learning, Engineer Computer Vision-специалист или NLP-специалист.