Теория вероятностей и математическая статистика

Введение в теорию вероятностей и математическую статистику

Вторая часть математической подготовки будущего Data Scientist-a.
Знакомимся с математической статистикой и применением ее в Data Science.
Курс входит в программу факультета искусственного интеллекта.

Чему Вы научитесь

  • Задачи мат.статистики;
  • Точечное и интервальное оценивание. Проверка гипотез. Критерии согласия;
  • Случайные процессы и поля. Процесс Пуассона. Нормальный случайный процесс.;
  • Интерполяция и регрессия. Фильтрация данных;
  • Корреляционный и спектральный анализ данных;
  • А/B-тест. DOE. Оценка значимости признаков;
  • Обратные задачи. Регуляризация;
  • Большие данные. Статистические зависимости.

Что Вы получите

Видеозаписи всех онлайн-занятий
Методички и практические задания
Общение с одногруппниками
Сертификат об окончании обучения
  • 1
    Урок 1. Случайные события. Условная вероятность. Формула Байеса. Независимые испытания
    Что такое случайное событие. Понятие статистической вероятности. Классическое определение вероятности. Формулы комбинаторики. Виды случайных событий. Понятие условной вероятности. Формула полной вероятности.
  • 2
    Урок 2. Дискретные случайные величины. Закон распределения вероятностей. Биномиальный закон распределения. Распределение Пуассона
    Что такое дискретная случайная величина. Закон распределения вероятностей. Биномиальное распределение. Распределение Пуассона.
  • 3
    Урок 3. Описательная статистика. Качественные и количественные характеристики популяции. Графическое представление данных
    Понятия генеральной совокупности и выборки. Математическое ожидание. Дисперсия, среднее квадратичное отклонение. Смещенная и несмещенная оценка дисперсии. Понятия моды, медианы, квартиля, перцентиля, дециля, квантиля. Построение гистограммы, boxplot.
  • 4
    Урок 4. Непрерывные случайные величины. Функция распределения и плотность распределения вероятностей. Равномерное и нормальное распределение. Центральная предельная теорема
    Непрерывные случайные величины. Функция и плотность распределения вероятностей. Равномерное распределение. Нормальное распределение. Центральная предельная теорема.
  • 5
    Урок 5. Проверка статистических гипотез. P-значения. Доверительные интервалы. A/B-тестирование
    Что такое статистическая гипотеза. Нулевые и альтернативные гипотезы. Статистические критерии для проверки гипотез. Доверительные интервалы. А/B тестирование.
  • 6
    Урок 6. Взаимосвязь величин. Параметрические и непараметрические показатели корреляции. Корреляционный анализ.
    Что такое корреляция. Коэффициент корреляции. Взаимосвязь величин. Ковариация. Ограничения корреляционного анализа.
  • 7
    Урок 7. Многомерный статистический анализ. Линейная регрессия
    Для чего применяют многомерный анализ. Что такое линейная регрессия. Коэффициент детерминации. F-критерий Фишера. t-статистика Стьюдента.
  • 8
    Урок 8. Дисперсионный анализ. Логистическая регрессия
    Однофакторный дисперсионный анализ. Двухфакторный дисперсионный анализ. Логистическая регрессия.

После обучения мы предлагаем всем выпускникам оценить программу курса и преподавателя, а также при желании оставить отзыв.
Все отзывы и оценки мы публикуем без изменений.