Большие данные и умные города: как подготовиться к будущему?
Это перевод статьи Big Data & Smart Cities: How can we prepare for them? Автор оригинала, Александр Гонфалоньери (Alexandre Gonfalonieri), пишет об ИИ, инновационных технологиях для бизнеса и общества.
Каждую неделю в города перебираются 1,3 миллиона человек, и можно ожидать, что к 2040 году 65 % населения мира станет городским. Причем 90 % роста численности горожан придется на страны Азии и Африки.
Последние несколько десятилетий эксперты пытаются повысить качество жизни в городах разными способами: от ввода платы за проезд по зонам с перегруженным движением до популяризации электровелосипедов (e-bikes).
Разговоров об умных городах много, но что стоит за этим понятием?
Умный город — тот, где с помощью передовых технологий расширен перечень доступных жителю услуг и оптимизирован каждый аспект городских мероприятий.
Какова роль больших данных в этой формуле?
Представьте: дисплей на приборной панели вашего автомобиля показывает предупреждение о том, что из-за погодных условий добраться до работы привычным путем будет трудно. Дальше программа перестраивает маршрут на основе показателей, которые отслеживает в реальном времени.
Вот вы въехали на крытую автостоянку, и бортовой компьютер уже подсказывает свободное парковочное место. При этом он учитывает, откуда вам будет ближе идти к работе, исходя из статистики предыдущих поездок.
Такой подход уже не будущее, а реальность. Большие данные (Big Data), интернет вещей (IoT) и распределенные датчики интенсивно внедряются в мегаполисах для реализации того, что многие называют городом будущего.
Это проявляется и в развертывании систем коммуникации: местные оптоволоконные сети, муниципальный Wi-Fi, специализированные приложения для конкретных задач (умные парковки, уличное освещение, вывоз и переработка отходов).
В нескольких крупных городах мира уже выбрали подход, при котором во главе угла не конкретные приложения, а данные как связующий элемент.
Данные — кровь, которая бежит по венам умного города.
Общий фундамент
Чтобы стать умными, города должны отвечать одному общему требованию: собирать достоверную информацию (с датчиков), на основе которой можно вырабатывать решения на долгосрочную перспективу. Потому что данные — золото нашего времени.
Если встроить датчики в городскую инфраструктуру и создать новые точки сбора данных — в том числе от горожан с их мобильными устройствами, — администрация умного города сможет анализировать большие данные, чтобы более точно отслеживать и прогнозировать происходящее.
Пример датчика, полезного в управлении городом
Большие данные — богатый источник возможностей для развития городских сервисов. Упрощенно говоря, Big Data — это огромный массив данных, анализ которого позволяет бизнесу принимать стратегические решения и получать лучшие результаты.
Анализ больших данных незаменим, когда у вас горы информации и нужно отыскать в ней закономерности или неочевидные идеи, которые позволят сделать ценные выводы.
Для развития умных городов очень важны информационно-коммуникационные технологии (ИКТ): они обеспечивают доступ к данным, собранным с помощью информационных систем. Механизм, который будет особенно полезен умным городам, известен как интернет вещей (IoT). Он основан на взаимодействии между устройствами, которые обмениваются данными через интернет, беспроводные и другие сети.
Интернет вещей нужен умным городам, чтобы собирать и эффективно обрабатывать данные, которые затем можно применить в конкретной области. Городские датчики и другие подключенные к сети устройства получают данные из нескольких «перевалочных пунктов» и анализируют, чтобы упростить принятие решений.
А еще на жизнедеятельность городов очень повлияют облачные платформы и аналитические приложения. Они предлагают экономичные средства управления данными и решениями, связанными с работой транспорта. Это создает основу для построения более безопасных и полезных маршрутов на уже существующих дорогах.
Приложения машинного обучения принимают данные с подключенных устройств и в режиме реального времени передают их на смартфоны путешественников.
Три уровня данных
Первый уровень — технологическая основа, которая включает в себя критическую массу смартфонов и датчиков, подключенных к высокоскоростным каналам связи.
Второй уровень — особые приложения, которые превратят сырые данные в предупреждения, идеи и действия. Тут за дело берутся разработчики и поставщики технологии.
Третий уровень — использование городами, компаниями и населением. Многим приложениям для эффективной работы нужны массовое распространение и способность менять свое поведение.
Проблемы управления городом
Системные интеграторы города не могут собрать весь объем данных, который хранится по разрозненным базам и системам с ограничением прав доступа и использования.
В наших городах уже накоплены тонны информации, но большая ее часть используется для решения отдельных задач и не встроена в общую систему управления городом. К таким данным относятся официальная статистика, карты, сведения о публичных торгах и закупках.
Технологии способны произвести переворот по многим направлениям: сделать парковки удобнее, улучшить уличное освещение, оптимизировать транспортный поток, вывоз и сортировку мусора, задействовать умные системы безопасности, прогнозировать катастрофы. Но пока информация слишком фрагментарна. Нужно собрать все существующие стандарты на единой унифицированной платформе.
Будет ли город умным, зависит от способности организаций обмениваться данными и анализировать их. Только обмен ключевой информацией в реальном времени позволит компаниям частного и социального сектора разрабатывать приложения для автоматизации задач и софт для инфраструктуры умного города.
Проблема в том, что пока под каждый новый тип датчика зачастую нужна своя база данных, которую городу приходится закупать. Когда между сенсорами и БД нет эффективного и прозрачного взаимодействия, извлечь пользу из полученных данных практически невозможно.
Наконец, большое значение имеет цена решений: именно в финансирование упираются многие инициативы по развитию умных городов. Одно из главных препятствий, мешающих сдвинуть подобные проекты с места — первоначальные затраты на установку минимально необходимого числа датчиков, без которого нет смысла и начинать.
В реальных развивающихся городах действия не скоординированы, а данные до сих пор собираются вручную.
Улучшаем город с помощью данных
Проанализируем, как данные упрощают жизнь в городах мира.
В бывшей столице Китая, городе Нанкин, датчики установлены на 10 000 такси, 7 000 автобусов и на миллионе частных машин. Данные, которую удается собрать таким образом, ежедневно поступают в Информационный Центр Нанкина. Там эксперты централизованно отслеживают и анализируют сведения о транспортных потоках, а затем отправляют обновления на смартфоны пассажиров. Это уже позволило властям города создать новые маршруты, которые улучшают транспортную ситуацию без строительства новых дорог.
Трениталия, главная железнодорожная компания Италии, установила датчики на поезда и теперь мгновенно узнает об изменениях в техническом состоянии каждого состава. Компании стало проще планировать ремонт поездов и действовать на опережение, предотвращая происшествия. Благодаря технологическим инновациям путешественники получили надежный и удобный сервис, а города избегают серьезных проблем.
В Лос-Анджелесе на протяжении 4,5 тысячи миль старое уличное освещение заменяют светодиодными лампами. Цель не только в том, чтобы стало светлее, но и в создании централизованной системы, которая будет информировать город о состоянии каждой лампочки. Когда одна из них перегорит, найти и заменить ее можно будет практически мгновенно. В перспективе можно будет управлять цветом освещения или заставить его мигать для оповещения горожан.
Группы, объединяющие множество людей, генерируют тонны информации. Большие данные позволяют понять, когда, как и почему собираются толпы, а также предсказывать их поведение и перемещения.
Миллионы датчиков уже работают в крупных городах. В ближайшем будущем их число будет расти — до тех пор, пока они не охватят все: от уличных фонарей и урн до энергопотребления и дорожной ситуации.
Информационные вызовы
Чтобы эффективно управлять данными, недостаточно их собирать и хранить. Нужно передавать и объединять — делать их доступными департаментам, организациям или всему обществу.
В крупнейших городах США и других стран миллионы датчиков каждую миллисекунду, секунду, минуту, час и день создают невообразимый объем данных… Большая их часть никогда не используется.
Умные города должны строиться на сетях, в которых возможен свободный обмен информацией.
При развертывании умного города совместное пользование данными — это и обязательное требование, и ценная возможность. Ясно, что распределение данных между городскими департаментами и платформами — ключевой момент планирования.
Возьмусь сделать прогноз: большинство городов внедрят совместное пользование данными как промежуточный этап на пути от интеграции данных к информационному обмену, а затем и к магазинам данных.
Создание цифровой инфраструктуры
Лучший способ организовать совместное пользование данными — применять открытые API. Вместе с рынками данных — или наряду с ними — они упрощают обмен информацией и позволяют включать в экосистему новых партнеров. Вот почему API — важнейший элемент любой платформы для умного города.
Все чаще власти городов вкладывают в API, с помощью которого разработчики и общественные организации могут получать доступ к открытым данным.
Чтобы создать хорошую платформу умного города, нужно следующее:
ТехнологияНазначение
Сети | Собирают данные |
Полевые шлюзы | Упрощают сбор и сжатие данных |
Облачный шлюз | Гарантирует безопасную передачу данных |
Система потоковой обработки данных | Сводит несколько потоков в озеро данных |
Озеро данных | Хранит данные, ценность которых еще предстоит определить |
Хранилище данных | Хранит очищенные и структурированные данные |
Аналитические системы | Анализируют и визуализируют информацию с датчиков |
Машинное обучение | Автоматизирует городские сервисы на основе долгосрочного анализа данных |
Пользовательские приложения | Соединяют умные вещи и горожан |
Идеальная платформа для обмена данными
Система совместного пользования данными должна обеспечивать обмен «в облаках». Это обеспечит лучшую переносимость, безопасность и конфиденциальность при передаче данных, а также ускорит разработку и тестирование приложений. Благодаря своей универсальности платформа обеспечит эти преимущества всем приложениям, в том числе специализированным. А значит весь городской софт будет опираться на актуальные технологии.
Платформа должна поддерживать два режима обмена данными: публичный и приватный. Если в отдельных приложениях данные смешиваются, особенно важно отслеживать, как они используются, обеспечивать надежную систему безопасности и управления.
Наконец, необходимо извлечь выводы из данных — привести их к виду, понятному людям, которые будут обрабатывать и использовать эти данные.
Big Data — ключевой элемент в системах городского масштаба, всеохватных по числу подключенных устройств. Технологии обработки больших данных сыграют ведущую роль в развитии умного градостроения будущего.
Освоить востребованную профессию в Data Science можно всего за полтора года на курсах GeekBrains. После учёбы вы сможете работать по специальностям Data Scientist, Data Analyst, Machine Learning, Engineer Computer Vision-специалист или NLP-специалист.
Освоить востребованную профессию в Аналитике больших данных можно всего за полтора года на курсах GeekBrains.