Искусственный интеллект вашего автомобиля
Технологии сегодня меняют мир быстрее, чем когда-либо. В 70-х годах искусственный интеллект существовал только в фантастических романах. 20 лет назад разработки ИИ уже велись, но успехи не были впечатляющими. Но в середине нулевых случился качественный прорыв в машинном обучении, ставший Большим взрывом для искусственного интеллекта. И сегодня множество нейросетей помогают нам фильтровать и искать информацию в интернете, обрабатывать фотографии, переводить тексты. Одна из областей, где ИИ открывает потрясающие новые возможности, — это автотранспорт.
Как искусственные нейросети изменят будущее вашего автомобиля?
Искусственный разум рулит!
Тема беспилотных автомобилей на слуху, и вокруг них поднялась не меньшая шумиха, чем в XIX — начале XX века по поводу «безлошадных повозок». На появление машины, которая сможет самостоятельно перемещаться в транспортном потоке, надеются многие. Но есть и опасения, что возрастет количество ДТП, в том числе смертельных.
Беспилотные авто активно разрабатываются на протяжении последнего десятилетия, а кое-где даже используются в тестовом режиме. К их созданию подключились гиганты автомобильной промышленности: BMW, Nissan, Honda, General Motors, Volkswagen, Audi, BMW и Volvo — и новые игроки на авторынке: Google, Tesla и множество менее крупных компаний. До массовых продаж беспилотных автомобилей дело пока не дошло. Автопилоты делают успехи, но до совершенства им далеко. Так что по меньшей мере в ближайшие пять-десять лет искусственный интеллект едва ли сумеет заменить — или хотя бы серьезно потеснить — опытного водителя.
Техническая реализация «искусственного водителя» — не единственная задача. Нейросети в автомобиле предстоит заботиться не только о том, чтобы соблюдать скоростной режим, сворачивать на нужных перекрестках и удачно парковаться. Ей придется еще и решать этические вопросы — например, когда ДТП неизбежно и приходится выбирать между двумя плохими вариантами. Что, если ИИ автомобиля внезапно обнаружит на дороге пешехода, но затормозить не будет успевать — и можно либо сбить человека, либо свернуть с дороги и врезаться в дерево, причинив вред пассажиру? Эта моральная дилемма известна как проблема вагонетки. И как искусственному разуму сделать выбор в ситуации, с которой не справиться и человеку?..
Однозначных ответов на подобные вопросы нет и не будет. Тем не менее, Массачусетский технологический институт (MIT) создал сайт, на котором предлагает всем желающим пройти тестирование и выбрать, как они решили бы предложенные моральные дилеммы. В будущем данные этих исследований могут помочь разработчикам научить искусственный интеллект делать этический выбор, руководствуясь «среднечеловеческими» показателями.
Моральный тест MIT. У автомобиля отказали тормоза. Какой выбор должен сделать автопилот: врезаться в препятствие, убив находящихся в салоне пассажиров — девочку, женщину-спортсменку, бездомного и кошку, или выполнить маневр и сбить пешеходов — женщину, полного мужчину, мужчину-спортсмена, беременную женщину и ребенка (принимая во внимание, что они переходят дорогу на красный свет)?
Впрочем, мы уверены, что с повсеместным внедрением беспилотных автомобилей улицы городов и автострады станут значительно менее опасными, чем сейчас, а количество ДТП снизится (хотя и вряд ли до нуля). Ведь ИИ не заснет за рулем, не отвлечется на разговор по телефону, не нарушит скоростной режим, не предпримет заведомо опасный маневр. И точно не сядет за руль пьяным.
Менее очевидное, чем автопилоты, применение искусственных нейросетей в автомобиле — это помощники человека, делающие вождение более безопасным.
Безопасность вождения
Уже сегодня умная электроника способна проложить маршрут с учетом пробок и погодных условий, а также предложить альтернативные способы добраться из пункта А в пункт Б. Навигатор покажет на дисплее дорогу и подскажет голосом, где сделать поворот или снизить скорость. Благодаря навигационным программам бумажные атласы автомобильных дорог и огромные карты городов становятся раритетом. Навигатор удобно использовать, а еще он помогает сделать поездку безопасной. Ведь водителю не нужно отвлекаться, чтобы свериться с картой незнакомого города, или высматривать таблички с названиями улиц на перекрестках, чтобы убедиться, что он не пропустил нужный поворот.
По статистике, свыше 50 % аварий на дорогах случается из-за того, что водитель был невнимателен или отвлекся. Нейросети автомобиля избавят человека от необходимости выполнять действия, которые отрывают его от управления машиной. Например, смогут по голосовой команде переключить радио, увеличить громкость или изменить маршрут поездки.
Но происшествия случаются, даже когда водитель внимателен и соблюдает правила, — на дорогах слишком много факторов, провоцирующих аварийную ситуацию. В таких условиях не помешает лишняя пара глаз — или видеокамер. Нейросеть, обрабатывающая информацию с автомобильных камер, сможет предупредить водителя о пешеходах или других автомобилях в опасной близости. Мы можем даже помечтать о том, что в будущем нейросети множества автомобилей и дорожных камер смогут обмениваться данными через интернет, и тогда мы получим предупреждение о неадекватном водителе задолго до того, как он появится в поле зрения.
Некоторые производители уже пытаются разрабатывать ИИ, работающий с изображением камеры, направленной на водителя. Такая нейросеть будет знать хозяина в лицо и не позволит чужаку сесть за руль. Кроме того, по мимике нейросеть сможет определить, что человек устал или вот-вот задремлет, — и вовремя подаст сигнал. А если аварии не удается избежать, то по положению головы вычислит, какие подушки безопасности необходимо включить, — это поможет избежать травм.
Что это стучит в двигателе?
Еще одна сфера применения нейросетей в автомобиле — контроль за внутренними системами.
Большинству автовладельцев знакома ситуация, когда в самый неподходящий момент автомобиль приходится отвозить в автосервис. Конечно, по закону Мерфи, именно в этот день нужно куда-то срочно ехать!
ИИ, подключенный к датчикам и системам автомобиля, мог бы выявлять потенциальные неисправности задолго до того, как они становятся реальными проблемам . Ведь гораздо дешевле пройти техобслуживание, чем чинить или заменять детали. Нейросеть сможет составлять графики профилактики, подсказывать адрес ближайшей автомастерской и контролировать ТО. Логи мониторинга всех систем помогут механикам понять, что и по какой причине вышло из строя или находится на грани поломки, а производителям автомобилей дадут возможность улучшать качество комплектующих и запчастей.
Подобная система отслеживания телеметрии уже существует у суперкара Bugatti Chiron. В режиме онлайн он передает данные о функционировании всех систем в сервисный центр производителя. Если обнаружена неисправность, ремонтная бригада оперативно отправляется в любую точку мира, чтобы устранить дефект, — во всяком случае, так утверждают в компании. Если же проблема не требует вмешательства квалифицированного специалиста, сервисный центр может просто позвонить владельцу авто — к примеру, если давление в шинах снизилось до критического уровня. Система телеметрии Bugatti контролирует около 10000 сигналов, поступающих от различных узлов автомобиля: двигателя, трансмиссии, освещения, климат-контроля, информационно-развлекательного центра и других. Пока такими системами оборудуют только избранные автомобили класса люкс, но начало уже положено.
Разумное автострахование
Искусственные нейросети уже находят применение в автостраховании. В первую очередь они используются для оценки рисков, а помогают им в этом большие данные о водителях.
Большие данные — это наборы информации, которые слишком велики и сложно структурированы, чтобы их можно было обрабатывать с помощью обычных систем управления БД или тем более вручную. В страховании используются десятки источников информации о клиентах — базы номеров VIN, сведения о покупках и продажах, данные о нарушениях ПДД и законодательства и многое другое.
Для страховых компаний значение при принятии решения имеет буквально все, что касается водителя, — состояние его здоровья, стиль вождения, участие в инцидентах на дороге и даже семейные отношения. Но проанализировать огромные массивы собранных данных, дать им качественную оценку и вынести заключение человек может далеко не всегда. Неточности в прогнозах страховых компаний могут необоснованно поднять стоимость страхования для хороших водителей и снизить для плохих.
При этом с развитием технологий список информационных источников может увеличиться. Страховые компании захотят учитывать сведения о манере вождения, соблюдении скоростного режима и поведении водителя в сложных ситуациях. Сейчас эти данные фактически невозможно получить и использовать при продаже страховки, но в будущем подобную информацию сможет собирать и пересылать страховой компании встроенный ИИ автомобиля.
Будем надеяться, что скоро наступит день, когда любители обгонять по обочине или подрезать на повороте станут платить за страховку больше — потому что эти факты станут известны страховой компании и искусственный интеллект, выносящий решение, примет их во внимание.
ИИ управляет производством
Роботы и другие автоматы давно и широко используются в автомобилестроении, да и во многих других производствах. Но пока большая их часть управляется обычными компьютерными программами. В случае любого сбоя конвейер останавливается, и для продолжения работы требуется вмешательство человека.
Эксперты прогнозируют, что искусственный интеллект поможет ускорить производство, сокращая время простоя. Опираясь на данные с датчиков, нейросети смогут отслеживать работу оборудования, выявлять назревающие проблемы и принимать меры, а также контролировать своевременность профилактического обслуживания. На ИИ можно возложить и контроль за качеством продукции.
В итоге уменьшатся расходы на ремонт и замену оборудования, потери из-за простоев. А значит, будет снижаться и себестоимость продукции.
Будущее не за горами. Уже никого не удивить умным навигатором, прокладывающим самый удобный маршрут. Через несколько лет привычным явлением будут автомобили под управлением ИИ, беспилотные грузовики, автобусы и такси, а наши путешествия станут как никогда прежде безопасными, легкими и комфортными.
Освоить востребованную профессию в Data Science можно всего за полтора года на курсах GeekBrains. После учёбы вы сможете работать по специальностям Data Scientist, Data Analyst, Machine Learning, Engineer Computer Vision-специалист или NLP-специалист.